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ABSTRACT. In this paper, we consider the problem of testing for parameter changes in time

series models based on a cusum test. Although the test procedure is well established for the mean

and variance in time series models, a general parameter case has not been discussed in the lit-

erature. Therefore, here we develop a cusum test for parameter change in a more general

framework. As an example, we consider the change of the parameters in a random coeefficient

autoregressive (1) model and that of the autocovariances of a linear process. Simulation results are

reported for illustration.
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1. Introduction

Since the paper of Page (1955), the problem of testing for a parameter change has been an

important issue among statisticians. Originally, the problem began with i.i.d samples; see

Hinkley (1971), Brown et al. (1975), Zacks (1983), Csörg}oo & Horváth (1988), Krishnaiah &

Miao (1988), Inclán & Tiao (1994), and it moved naturally into the time series context as

economic time series often exhibit prominent evidence for structural change in the underlying

model; see, for example, Wichern et al. (1976), Picard (1985), Krämer et al. (1988), Tang &

MacNeil (1993), Kim et al. (2000), Lee & Park (2001), and the papers cited therein. If the

random observations are i.i.d and follow a specific parametric model, one may consider

utilizing a likelihood ratio method as in Csörg}oo & Horváth (1997). However, the method is no

longer applicable if the underlying distribution is completely unknown. In such a case, a non-

parametric approach should be considered as an alternative. From this viewpoint, here we pay

attention to the cusum method for testing for parameter change.

The cusum method is easy to handle and useful for detecting the locations of change points

as seen in Inclán & Tiao (1994). In particular, it has been utilized for testing for a change of

mean, variance and distribution function (cf. Bai, 1994). A convenience of the method lies in

the fact that the sample mean, variance and distribution function are all expressed as the sum

of i.i.d random variables, and the convergence result of the cusum test statistic is easily

obtained. In fact, Nyblom (1989) considered a sort of cusum method to handle the change

point problem for parameters other than the mean and variance. However, the test procedure

assumes that the underlying distribution of observations belongs to a known distribution

family, and the test statistic is based on estimators relying on the underlying distribution.

Unlike in his approach, here we pursue a cusum test, which is totally free from assumptions

about the underlying distribution.

In fact, our cusum test can be constructed by imitating the one for a mean change in the i.i.d

sample. Conventionally, the estimators of a target parameter after normalization are expressed

as the sum of the average of i.i.d random variables and a negligible term. The basic idea is then
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to view the change problem for the parameter as the one for the expected value of the random

variables in that expression as a change of parameter would affect the expected value. Fol-

lowing this idea, one can easily construct the cusum test statistic. The details are presented in

section 2.

The rest of this paper is organized as follows. In section 2, we present how the cusum test is

constructed in a general framework. In section 3, we apply the cusum method to the problem

of testing parameter constancy in random coefficient autoregressive (RCA) models based on a

(conditional) least-squares estimator (LSE). Also, in section 4, we consider the problem of

testing for an autocovariance change in infinite order moving average processes based on the

sample autocovariance functions. Section 5 reports simulation results for the cusum tests

regarding the models discussed in sections 3 and 4.

2. Cusum test

Here we explain how the cusum test is constructed. As an illustration, we consider the test for

a mean change in an i.i.d sample based on the following process

UnðsÞ :¼
1ffiffiffi
n

p
r

X½ns�
t¼1

xt �
½ns�
n

� �Xn
t¼1

xt

 !

¼ ½ns�ffiffiffi
n

p
r
ðl̂l½ns� � l̂lnÞ; 0 � s � 1; ð1Þ

where x1,…, xn are i.i.d with mean l and variance r2, and l̂ln ¼ n�1
Pn

t¼ 1 xt. It is well known
that {Un} converges weakly to a standard Brownian bridge, and a test is performed based on

the convergence result. Similar reasoning can be adopted for the more general case.

Suppose that one is interested in testing for a change of h based on a consistent estimator ĥhn.
As with the maximum likelihood estimator (MLE), usually ĥhn can be written as

ĥhn � h ¼ n�1
Xn
t¼1

lt þ oP
1ffiffiffi
n

p
� �

(cf. Durbin, 1973), where lt :¼ lt(h) are i.i.d random variables with zero mean and a second

moment. If the lt are observable as in (1), one can construct a cusum test based on

VnðsÞ :¼ n�1=2ðEl2t Þ
�1=2

X½ns�
t¼1

lt �
½ns�
n

� �Xn
t¼1

lt

 !

’ ½ns�ffiffiffi
n

p ðEl2t Þ
1=2

ðĥh½ns� � ĥhnÞ; 0 � s � 1: ð2Þ

However, generally the lt are unobservable, and there must be a justification for having the

argument in (2). In time series models, {lt} usually forms a sequence of stationary martingale

differences (cf. sections 3 and 4).

Now, let us consider the stationary time series {xt; t ¼ 0, ±1, ±2,…}, and let

h ¼ (h1,…, hJ)¢ be the parameter vector, which will be examined for constancy, e.g. the mean,

variance, autocovariances, etc. Here, we wish to test the following hypotheses based on the

estimators ĥhn
H0 : h does not change for x1,…, xn versus H1 : not H0.

Let ĥhk be the estimator of h based on x1,…, xk. As we saw in (2), we investigate the

differences ĥhk � ĥhn, k ¼ 1,…, n, for constructing a cusum test. The details are addressed

below.

Suppose that ĥhk obtained from x1,…, xk, satisfies the following
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ffiffiffi
k

p
ðĥhk � hÞ ¼ 1ffiffiffi

k
p
Xk
t¼1

lt þ Dk ; ð3Þ

where lt :¼ lt(h) ¼ (l1,t,…, lJ,t)¢ forms stationary martingale differences with respect to a

filtration {Ft}, namely, for every t,

EðltjF t�1Þ ¼ 0 a.s.; ð4Þ

and Dk ¼ (D1, k,…, DJ,k)¢.
Let C ¼ Var(lt) be the covariance matrix of lt. Assuming that C is non-singular, we define

the normalized martingale differences nt :¼ C)1/2lt. Note that nt ¼ (n1,t,…, nJ,t)¢ has un-

correlated components and satisfies (4). Thus if we put

nn;t ¼ ðn1;n;t; . . . ; nJ ;n;tÞ0 :¼ n�1=2nt; ð5Þ

it holds that

X½ns�
t¼1

nn;t !
w
WJ ðsÞ ð6Þ

in the DJ[0, 1] space (cf. Billingsley, 1968), where WJ(s) ¼ (W1(s),…, WJ(s))¢ denotes a

J-dimensional standard Brownian motion, as the following conditions are satisfied

(cf. Gaenssler & Haeusler, 1986, p. 311):

ð1Þ For j ¼ 1; . . . ; J and s 2 ½0; 1�;
X½ns�
t¼1

Eðn2j;n;tjF t�1Þ!
P
s: ð7Þ

ð2Þ For j ¼ 1; . . . ; J and � > 0;
Xn
t¼1

Eðn2j;n;tIðjnj;n;tj > �ÞjF t�1Þ!
P
0: ð8Þ

Now, suppose that for each j ¼ 1,…, J,

max
1�k�n

ffiffiffi
k

pffiffiffi
n

p jDj;k j ¼ oP ð1Þ: ð9Þ

Then from (3), (6) and (9), we have that

½ns�ffiffiffi
n

p C�1=2ðĥh½ns� � hÞ ¼
X½ns�
t¼1

nn;t þ C�1=2

ffiffiffiffiffiffiffi
½ns�

p
ffiffiffi
n

p D½ns�!
w
WJ ðsÞ; ð10Þ

and consequently,

½ns�ffiffiffi
n

p C�1=2ðĥh½ns� � ĥhnÞ!
w
W�

J ðsÞ; ð11Þ

where W�
J ðsÞ ¼ ðW �

1 ðsÞ; . . . ; W �
J ðsÞÞ0, is a J-dimensional standard Brownian bridge. The

following is a direct result of (3)–(11).

Theorem 1

Define the test statistic Tn by

Tn ¼ max
J�k�n

k2

n
ðĥhk � ĥhnÞ0C�1ðĥhk � ĥhnÞ:

Suppose that conditions (6) and (9) hold. Then, under H0,
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Tn!
d

sup
0�s�1

XJ
j¼1

W �
j ðsÞ

	 
2
: ð12Þ

We reject H0 if Tn is large.

Using the result in (12), one can determine the critical region (Tn ‡ Ca), given a nominal

level a, where Ca is the (1 ) a)-quantile point of sup0� s� 1

PJ
j¼ 1 W �

j ðsÞ
	 
2

. However, as it is

not easy to calculate the critical values analytically, we provide the tables through a Monte

Carlo simulation. For this task, we generate the random numbers �t following the standard

normal distribution and compute the empirical quantiles based on the random variables

Un;J ¼ max
1�k�n

XJ
j¼1

n�1=2
Xk
i¼1

�ij � n�1=2 k
n

� �Xn
i¼1

�ij

( )2

:

Table 1 below shows the significance levels for a ¼ 0.01, 0.05, 0.1 and J ¼ 1,…, 10, which are

obtained by computing the empirical quantiles using 10,000 simulated U1000,Ms.

Theorem 1 shows that the change point test in time series models can be accomplished based

on any estimators provided they satisfy regularity conditions. We can say that the cusum test is

widely applicable in a broad class of time series models as it constitutes the most natural non-

parametric test, and some well-known estimators, such as the method of moment estimator

and the Gaussian MLE, could be employed to perform a test.

3. Test for RCA(1) model

In this section, we focus on the RCA model. RCA models are widely used in many areas such

as biology, engineering, finance and economics, and have been studied to investigate the effects

of random perturbations of a dynamical system (cf. Tong, 1990). Many important properties

of RCA models are reported in Nicholls & Quinn (1982) and Feigin & Tweedie (1985), some of

which will be used in appropriate places.

Let {xt; t ¼ 0, ±1, ±2, …} be the time series of the RCA(1) model

xt ¼ ð/ þ btÞxt�1 þ �t; ð13Þ

where

bt
�t

� �
� i.i.d

0
0

� �
;

x2 0
0 r2

� �� �
:

Nicholls & Quinn (1982) showed that a sufficient condition for the strict stationarity

and ergodicity of {xt} in (13) is /2 + x2 < 1. Here, we assume that E�2kt < 1 and

E(/ + bt)
2k < 1 for some k that will be specified later, which immediately yields Ex2kt < 1

(cf. Feigin & Tweedie, 1985).

Now, we consider the problem of testing for a change of the parameter vector h ¼
(/, x2, r2)¢ based on a (conditional) LSE ĥh. Suppose that x1,…, xn are a sample from (13) and

assume x0 ¼ 0. We intend to test the following hypotheses

Table 1. Empirical (1)a)-quantiles of U1000,J for J ¼ 1,…, 10

J

a 1 2 3 4 5 6 7 8 9 10

0.01 2.558 3.269 3.904 4.478 4.946 5.471 5.947 6.349 6.903 7.071

0.05 1.820 2.408 3.004 3.452 3.899 4.375 4.772 5.179 5.632 5.884

0.10 1.488 2.054 2.576 3.018 3.432 3.845 4.244 4.627 5.024 5.350
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H0 : h ¼ (/, x2, r2)¢ is constant over x1,…, xn versus

H1 : not H0.

In order to construct a cusum test, consider the estimators ĥhk ¼ ð/̂/k ; x̂x
2
k ; r̂r

2
kÞ

0 based on

x1,…, xk, k ¼ 1,…, n. The estimator /̂/k of / is defined as the minimizer ofPk
t¼ 1ðxt � /xt� 1Þ2, and the estimators x̂x2

k and r̂r2
k are defined as the minimizers ofPk

t¼ 1ðûu2k;t � x2x2t� 1 � r2Þ2, where ûuk;t ¼ xt � /̂/kxt� 1, by noticing the equation

Eðu2t jF t�1Þ ¼ x2x2t�1 þ r2 under H0;

where ut ¼ xt ) /xt)1 and Ft ¼ r(�s, bs; s £ t). Then, ĥhk is written as

ĥhk ¼
/̂/k
x̂x2
k

r̂r2
k

0
@

1
A ¼

Pk
t¼1 xt�1xtPk
t¼1 x

2
t�1Pk

t¼1ðx2t�1 � m2;kÞûu2k;tPk
t¼1ðx2t�1 � m2;kÞ2

k�1
Xk
t¼1

ûu2k;t � x̂x2
km2;k

0
BBBBBBBBB@

1
CCCCCCCCCA
;

where m2;k ¼ k�1
Pk

t¼ 1 x
2
t�1.

Suppose that the null hypothesis H0 is true. In order to apply the procedure in section 2, we

decompose ĥhk into the sum of martingale differences with respect to {Ft} and negligible terms

as in (3)

ffiffiffi
k

p /̂/k � /
x̂x2
k � x2

r̂r2
k � r2

0
@

1
A ¼ 1ffiffiffi

k
p

Pk
t¼1 l1;tPk
t¼1 l2;tPk
t¼1 l3;t

0
B@

1
CAþ

D1;k

D2;k

D3;k

0
@

1
A; ð14Þ

where

l1;t ¼
xt�1ut
Ex21

;

l2;t ¼
x2t�1 � Ex21
� �

ðu2t � x2x2t�1 � r2Þ
Eðx21 � Ex21Þ

2
;

l3;t ¼ u2t � x2x2t�1 � r2 � l2;tEx21;

D1;k ¼
Ex21 � m2;k

Ex21m2;k

1ffiffiffi
k

p
Xk
t¼1

xt�1ut;

D2;k ¼
1ffiffiffi
k

p
Xk
t¼1

ðu2t � x2x2t�1 � r2Þ x2t�1 � m2;k

k�1
Pk

t¼1ðx2t�1 � m2;kÞ2
� x2t�1 � Ex21
Eðx21 � Ex21Þ

2

 !

þ
ffiffiffi
k

p Xk
t¼1

ðx2t�1 � m2;kÞPk
t¼1ðx2t�1 � m2;kÞ2

2ð/ � /̂/kÞxt�1ut þ ð/ � /̂/kÞ2x2t�1

	 

;

D3;k ¼ �D2;kEx21 þ
1ffiffiffi
k

p
Xk
t¼1

2ð/ � /̂/kÞxt�1ut þ ð/ � /̂/kÞ2x2t�1

	 


� 1ffiffiffi
k

p
Xk
t¼1

ðx2t�1 � Ex21Þðx̂x2
k � x2Þ:

It is obvious that for each j ¼ 1, 2, 3, {lj,t} in (14) forms a sequence of martingale differences

with respect to {Ft}. Furthermore, from the stationarity and ergodicity of {xt}, {lj,t} is also

stationary and ergodic.
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Putting Cij ¼ E(li,t lj,t) and C ¼ Cij
� �3

i;j¼ 1
, we can see that the random variables nj,n,t,

j ¼ 1, 2, 3, as defined in (5), are strictly stationary and ergodic martingale differences. Thus,

{nj,n,t} satisfies conditions (7) and (8), and hence,

X½ns�
t¼1

n1;n;t;
X½ns�
t¼1

n2;n;t;
X½ns�
t¼1

n3;n;t

 !0

!w W3ðsÞ: ð15Þ

In view of (15) and (9), it suffices to show that

max
1�k�n

ffiffiffi
k

pffiffiffi
n

p jDj;k j ¼ oP ð1Þ; j ¼ 1; 2; 3; ð16Þ

to obtain the convergence result in theorem 2. The following is the main result of this section.

Theorem 2

Suppose that E�1
16<1 and E(/ + b1)

16 < 1. Then under H0, as n fi 1,

½ns�ffiffiffi
n

p C�1=2ðĥh½ns� � ĥhnÞ�!
w
W�

3ðsÞ:

In view of the result of theorem 2, we can construct the test statistic

Tn ¼ max
1�k�n

k2

n
ðĥhk � ĥhnÞ0ĈC�1ðĥhk � ĥhnÞ;

where ĈC is a consistent estimator of C. We reject H0 at the level a if Tn ‡ Ca, where Ca is the

(1 ) a)-quantile point of sup0�s�1

P3
j¼1 W �

j ðsÞ
	 
2

.

In fact, one can calculate

C11 ¼
x2Ex41 þ r2Ex21

Ex21
� �2 ;

C22 ¼ Ex41 � ðEx21Þ
2

	 
�2

ðEb41 � x4ÞðEx81 � 2Ex21Ex
6
1 þ ðEx21Þ

2Ex41Þ
	

þ 4x2r2ðEx61 � 2Ex21Ex
4
1 þ ðEx21Þ

3Þ þ ðE�41 � r4ÞðEx41 � ðEx21Þ
2Þ


;

C33 ¼ Eb41 � x4
� �

Ex41 �
2Ex21ðEx61 � Ex21Ex

4
1Þ

Ex41 � ðEx21Þ
2

 !

� 4x2r2Ex21 þ E�41 � r4 þ ðEx21Þ
2C22;

C12 ¼
Eb31Ex

6
1 � Eb31Ex

2
1Ex

4
1 þ E�31Ex

3
1

Ex21Ex
4
1 � Ex21

� �3 ;

C13 ¼
�Eb31Ex21Ex61 þ Eb31 Ex41

� �2�E�31Ex21Ex31
Ex21Ex

4
1 � Ex21

� �3 ;

C23 ¼
ðEb41 � x4ÞðEx61 � Ex21Ex

4
1Þ

Ex41 � Ex21
� �2 þ 4x2r2 � Ex21C22:

Therefore, in order to obtain ĈC, one should estimate E�3t ; Eb
3
t ; E�

4
t and Eb4t . For the esti-

mators of E�3t and Eb
3
t , we employ the LSEs to minimize

Pn
t¼1ðûu3t � x3t�1Eb

3
t þ E�3t Þ

2 in view

of the equation Eðu3t jF t�1Þ ¼ x3t�1Eb
3
t þ E�3t . The estimators for E�4t and Eb4t are similarly

obtained. Plugging those estimators and n�1
Pn

t¼1 x
k
t ; k ¼ 2; 3; 4; 6; 8, into Cij, one can get a

consistent estimator ĈC of C.
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Now, we prove (16). The following lemma is needed for later work. We state it without

proof.

Lemma 1

If a double array of random variables {xn,k: 1 £ k £ n,n ‡ 1} satisfies the conditions

(i) For each N ‡ 1, max1£k£N|xn,k| ¼ oP(1) as n fi 1.

(ii) For any � > 0 and d > 0, there exist N and L, such that P (maxN£k£n|xn,k| > �) < d for all

n ‡ L,

then max1£k£n|xn,k| ¼ oP(1).

The following lemma is concerned with the negligibility of D1,k.

Lemma 2

Under the conditions in theorem 2,

max
1�k�n

ffiffiffi
k

pffiffiffi
n

p D1;k

����
���� ¼ oP ð1Þ:

Proof. First, note that

1ffiffiffi
n

p max
1�k�n

ffiffiffi
k

p
D1;k

��� ��� � max
1�k�n

Pk
t¼1 xt�1utffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2k log logk
p
�����

����� 1ffiffiffi
n

p max
1�k�n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k log logk

p
ðm2;k � Ex21Þ

Ex21m2;k

����
����:

As {xt)1ut} are stationary and ergodic, we can see that

max
1�k�n

Pk
t¼1 xt�1utffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2k log logk
p
�����

����� ¼ OP ð1Þ;

by the law of the iterated logarithm (LIL) for martingales (cf. Stout, 1970). Note that for each

N ‡ 1, as n fi 1,

1ffiffiffi
n

p max
1�k�N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k log logk

p
ðm2;k � Ex21Þ

Ex21m2;k

����
���� ¼ oP ð1Þ:

Hence, in order to obtain

1ffiffiffi
n

p max
1�k�n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k log logk

p
ðm2;k � Ex21Þ

Ex21m2;k

����
���� ¼ oP ð1Þ;

it suffices to show that condition (ii) of lemma 1 holds.

For any � > 0, d > 0 and N ‡ 1, observe that

Rn;N :¼ P
1ffiffiffi
n

p max
N�k�n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k log logk

p
ðm2;k � Ex21Þ

Ex21m2;k

����
���� > �

� �

� P
1ffiffiffi
n

p max
N�k�n

2 log log k max
N�k�n

2
Pk

t¼1ðx2t�1 � Ex21Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k log log k

p
ðEx21Þ

2

�����
����� > �

 !
þ

X1
k¼N

P k�1
Xk
t¼1

ðx2t�1 � Ex21Þ
�����

����� � Ex21
2

 !

¼: In þ IIN :
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Note that by the LIL,

max
N�k�n

Pk
t¼1ðx2t�1 � Ex21Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k log log k

p
�����

����� ¼ OP ð1Þ;

so that In < d/2 for sufficiently large n, say n ‡ L.

Meanwhile, by Markov’s inequality, we have

X1
k¼N

P k�1
Xk
t¼1

ðx2t�1 � Ex21Þ
�����

����� � Ex21
2

 !
� Ex21

2

� ��4X1
k¼N

E k�1
Xk
t¼1

ðx2t�1 � Ex21Þ
 !4

:

Therefore, we can choose N such that IIN < d/2, as

X1
k¼1

E k�1
Xk
t¼1

ðx2t�1 � Ex21Þ
 !4

< 1:

This yields that Rn,N < d for all n ‡ L, and the lemma is established.

Lemma 3

Under the conditions in theorem 2,

max
1�k�n

ffiffiffi
k

pffiffiffi
n

p D2;k

����
���� ¼ oP ð1Þ:

Proof. Write

ffiffiffi
k

pffiffiffi
n

p D2;k ¼
1ffiffiffi
n

p
Xk
t¼1

ðu2t � x2x2t�1 � r2Þ x2t�1 � m2;k

k�1
Pk

t¼1ðx2t�1 � m2;kÞ2
� x2t�1 � Ex21
Eðx21 � Ex21Þ

2

 !

þ kffiffiffi
n

p
Xk
t¼1

ðx2t�1 � m2;kÞPk
t¼1ðx2t�1 � m2;kÞ2

2ð/ � /̂/kÞxt�1ut þ ð/ � /̂/kÞ2x2t�1

	 

¼ Ik þ IIk :

For Ik, observe that

max
1�k�n

jIk j � max
1�k�n

Xk
t¼1

ðu2t � x2x2t�1 � r2Þðx2t�1 � Ex21Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k log log k

p
�����

�����
� 1ffiffiffi

n
p max

1�k�n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k log log k

p
Eðx21 � Ex21Þ

2 � k�1
Pk

t¼1ðx2t�1 � m2;kÞ2
	 


Eðx21 � Ex21Þ
2k�1

Pk
t¼1ðx2t�1 � m2;kÞ2

������
������

þ max
1�k�n

Xk
t¼1

ðu2t � x2x2t�1 � r2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k log log k

p
�����

������ 1ffiffiffi
n

p max
1�k�n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k log log k

p
ðEx21 � m2;kÞ

k�1
Pk

t¼1ðx2t�1 � m2;kÞ2

�����
�����

As fðu2t � x2x2t�1 � r2Þðx2t�1 � Ex21Þg and fu2t � x2x2t�1 � r2g are stationary and ergodic, sim-

ilar to the arguments in the proof of lemma 2, we can see that the first and third terms are OP

(1) and the second and fourth terms are oP (1). Therefore, we can conclude that

max1£k£n|Ik| ¼ oP (1).
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Now, we prove max1£k£n|IIk| ¼ oP (1). Observe that

max
1�k�n

jIIk j � 2 max
1�k�n

kffiffiffi
n

p
Xk
t¼1

ðx2t�1 � m2;kÞxt�1utPk
t¼1ðx2t�1 � m2;kÞ2

 !
ð/ � /̂/kÞ

�����
�����

þ max
1�k�n

kffiffiffi
n

p
Xk
t¼1

ðx2t�1 � m2;kÞx2t�1Pk
t¼1ðx2t�1 � m2;kÞ2

 !
ð/ � /̂/kÞ2

�����
�����

¼ IIk1 þ IIk2:

In order to show IIk1 ¼ oP (1), it suffices to show that

1ffiffiffi
n

p max
1�k�n

Xk
t¼1

ðx2t�1 � m2;kÞxt�1ut

�����
�����j/ � /̂/k j ¼ oP ð1Þ: ð17Þ

First, note that by the LIL,

max
1�k�n

Pk
t¼1ðx2t�1 � m2;kÞxt�1utffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2k log log k
p

�����
����� ¼ OP ð1Þ: ð18Þ

Furthermore, from the relationship j/̂/k � /j � j
Pk

t¼1 xt�1utj=ðkEx21Þ þ jD1;k j=
ffiffiffi
k

p
,

1ffiffiffi
n

p max
N�k�n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k log log k

p
j/̂/k � /j ¼ oP ð1Þ:

This together with (18) implies (17). Meanwhile, noticing

1ffiffiffi
n

p
Pk

t¼1ðx2t�1 � m2;kÞm2;k

k�1
Pk

t¼1ðx2t�1 � m2;kÞ2
ð/ � /̂/kÞ2 ¼ 0;

we can see that the term IIk2 reduces to max1� k� n
kffiffi
n

p ð/̂/k � /Þ2
��� ���. As for any � > 0,

P max
1�k�n

kffiffiffi
n

p ð/̂/k�/Þ2
����

����> �

� �
¼ P max

1�k�n

2 loglog kffiffiffi
n

p
Pk

t¼1 xt�1ut=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k log log k

p

k�1
Pk

t¼1 x
2
t�1

�����
�����
2

> �

0
@

1
A¼ oð1Þ;

we have IIk2 ¼ oP (1). This completes the proof.

It remains to show the asymptotic negligibility of D3,k to complete the proof of theorem 2.

Lemma 4

Under the conditions in theorem 2,

max
1�k�n

ffiffiffi
k

pffiffiffi
n

p D3;k

����
���� ¼ oP ð1Þ:

Proof. Split max1� k� n

ffiffi
k

pffiffi
n

p D3;k into the following four terms

max
1�k�n

ffiffiffi
k

pffiffiffi
n

p D3;k

����
���� � max

1�k�n

ffiffiffi
k

pffiffiffi
n

p D2;k

����
����Ex21

þ max
1�k�n

2ð/ � /̂/kÞ
1ffiffiffi
n

p
Xk
t¼1

xt�1ut

�����
�����þ max

1�k�n
ð/ � /̂/kÞ2

1ffiffiffi
n

p
Xk
t¼1

x2t�1

�����
�����

þ max
1�k�n

Pk
t¼1ðx2t�1 � Ex21Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k log log k

p
�����

����� max
1�k�n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k log log k

p ffiffiffi
n

p ðx̂x2
k � x2Þ

����
����:

Scand J Statist 30 The cusum test 789

� Board of the Foundation of the Scandinavian Journal of Statistics 2003.



Similar to the proof of lemma 3, we can see that each term is oP (1). Following some algebra,

the details of which we omit, we establish the lemma.

4. Test for autocovariance function

In this section, we consider the problem of testing for a change of autocovariance function in

infinite order moving average processes in light of the results of section 2. Let

{xt; t ¼ 0,±1, ±2,…} be a stationary linear process of the form

xt ¼
X1
i¼0

ai�t�i; ð19Þ

where the real sequence {ai} satisfies the summability condition
P1

i¼0 ijaij < 1 and �t are i.i.d

random variables with mean 0, variance r2
� , and E|�1|

4k < 1 for some k > 1. Assume that

x1,…, xn are observed, and denote the autocovariance at lag h by c(h). As an estimate of c(h),
we use

ĉcnðhÞ ¼
1

n

Xn�h
t¼1

ðxt � �xxnÞðxtþh � �xxnÞ; �xxn ¼
1

n

Xn
t¼1

xt:

The following result is to show that the weak convergence result in (11) holds.

Theorem 3

Let

KnðsÞ ¼
½ns�ffiffiffi
n

p ĉc½ns�ð0Þ � ĉcnð0Þ
	 


; . . . ;
½ns�ffiffiffi
n

p ĉc½ns�ðmÞ � ĉcnðmÞ
	 
� �0

; 0 � s � 1:

Then under H0, where no changes are assumed to occur in the autocovariance function, we have

KnðsÞ0C�1KnðsÞ!
w Xm

j¼0

W �
j ðsÞ

	 
2
;

where C is the (m + 1) · (m + 1) matrix whose (i, j)th entry is

Cij ¼ j4cðiÞcðjÞ þ
X1
r¼�1

cðiþ rÞcðjþ rÞ þ cði� rÞcðjþ rÞð Þ; i; j ¼ 0; . . . ;m;

and j4 is the kurtosis of �1.

As C is unknown, we should replace it by a consistent estimator ĈC. Now we assume that {xt}

in (19) can be rewritten as

xt ¼
X1
j¼1

pjxt�j þ �t; ð20Þ

where pðzÞ :¼ 1�
P1

j¼1 pjzj is analytic on an open set containing the unit disk in the complex

plane, and have no zeros in the unit disk. Notice that {xt} can be rewritten as in (19), and

covers stationary and invertible ARMA processes. We introduce a sequence of positive

integers {hn}, such that as n fi 1,

hn ! 1 and hn ¼ OðnbÞ for some b 2 0;
ðk � 1Þ
2k

� �
:
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Then if ĵj4 is a consistent estimator of j4, we have

ĈCij�!
P

Cij; ð21Þ

where

ĈCij ¼ ĵj4ĉcnðiÞĉcnðjÞ þ
Xhn
r¼�hn

ĉcnðiþ rÞĉcnðjþ rÞ þ ĉcnði� rÞĉcnðjþ rÞð Þ; i; j ¼ 0; . . . ;m:

The argument in (21) can be readily proved by using lemma 4.2 (ii) of Lee (1996, p. 2239).

Note that a consistent ĵj4 can be obtained by calculating residuals �̂�t via fitting a long AR(q)

model to observations (cf. Lee & Wei, 1999), viz., ĵj4 ¼ n�1
Pn

t¼1 �̂�
4
t =ðn�1

Pn
t¼1 �̂�

2
t Þ

2 � 3. A

typical example of q is ( log n)2. From theorem 3 and (21), we obtain the following result.

Theorem 4

Under H0,

KnðsÞ0ĈC�1KnðsÞ�!
w Xm

j¼0

W �
j ðsÞ

	 
2
:

Theorem 4 ensures the Brownian bridge result for the cusum test statistic. The test statistic is

defined as

Kn :¼ max
mþ1�k�n

Knðk=nÞ0ĈC�1Knðk=nÞ:

Now, we prove theorem 3.

Proof of Theorem 3. Note that

ffiffiffi
k

p
ĉckðhÞ � cðhÞð Þ ¼ 1ffiffiffi

k
p
Xk
t¼1

xtxtþh � cðhÞð Þ þ dh;k ;

where

dh;k ¼ � 1ffiffiffi
k

p �xxk
Xk
t¼1

xtþh �
1ffiffiffi
k

p
Xk

t¼k�hþ1

ðxt � �xxkÞðxtþh � �xxkÞ:

In view of Phillips & Solo (1992, p. 980), we can write that

xtxtþh ¼ fhðBÞ�2t þ
X1
r¼1

fhþrðBÞ�t�r�t þ fh�rðBÞ�tþr�tð Þ

¼ fhð1Þ�2t þ
X1
r¼1

fhþrð1Þ�t�r�t þ fh�rð1Þ�tþr�tð Þ

� ð1� BÞ~ffhðBÞ�2t � ð1� BÞ
X1
r¼1

~ffhþrðBÞ�t�r�t þ ~ffh�rð1Þ�tþr�t
� �

;

where B is a back-shift operator,

fjðBÞ ¼
X1
i¼0

fjiBi ¼
X1
i¼0

aiaiþjBi
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and

~ffjðBÞ ¼
X1
i¼0

~ffjiBi ¼
X1
i¼0

X1
l¼iþ1

fjl

 !
Bi ¼

X1
i¼0

X1
l¼iþ1

alalþj

 !
Bi:

As cðhÞ ¼ fhð1Þr2
� , we can write

1ffiffiffi
k

p
Xk
t¼1

ðxtxtþh � cðhÞÞ ¼ 1ffiffiffi
k

p
Xk
t¼1

lh;t þ
X3
j¼1

Dh;k;j;

where

lh;t ¼ fhð1Þð�2t � r2
� Þ þ

X1
r¼1

fhþrð1Þ þ fh�rð1Þð Þ�t�r�t;

Dh;k;1 ¼
X1
r¼1

fh�r
1ffiffiffi
k

p
Xk
t¼1

ð�tþr�t � �t�t�rÞ
 !

;

Dh;k;2 ¼ � 1ffiffiffi
k

p ~ffhðBÞ�2k þ
1ffiffiffi
k

p ~ffhðBÞ�20 �
1ffiffiffi
k

p
X1
r¼1

~ffhþrðBÞ�k�r�k þ ~ffh�rð1Þ�kþr�k
� �

þ 1ffiffiffi
k

p
X1
r¼1

~ffhþrðBÞ��r�0 þ ~ffh�rð1Þ�r�0
� �

;

Dh;k;3 ¼ dh;k :

First, observe that

C�1=2 1ffiffiffi
n

p
X½ns�
t¼1

l0;t; . . . ;
1ffiffiffi
n

p
X½ns�
t¼1

lm;t

 !0

�!w Wmþ1ðsÞ; ð22Þ

which can be shown similarly to (6). Secondly, note that

max
1�k�n

ffiffiffi
k

pffiffiffi
n

p Dh;k;1

�� �� ¼ oP ð1Þ; ð23Þ

as

max
1�k�n

ffiffiffi
k

pffiffiffi
n

p jDh;k;1j �
1ffiffiffi
n

p max
1�k�n

Xk�1

r¼1

fh�rð1Þ
Xk

t¼k�rþ1

�tþr�t

�����
�����

þ 1ffiffiffi
n

p max
1�k�n

Xk�1

r¼1

fh�rð1Þ
Xr
t¼1

�t�t�r

�����
�����

þ 1ffiffiffi
n

p max
1�k�n

X1
r¼�k

fh�rð1Þ
Xk
t¼1

ð�tþr�t � �t�t�rÞ
�����

�����
¼ OP ðn�1=4Þ;

where we have used Minkowski’s inequality and the fact that
P1

r¼1 rjfh�rð1Þj < 1.

Thirdly, we have that

max
1�k�n

ffiffiffi
k

pffiffiffi
n

p jDh;k;2j ¼ oP ð1Þ; ð24Þ

as

max
1�k�n

1ffiffiffi
n

p ~ffhðBÞ�2k
�� ��þ max

1�k�n

1ffiffiffi
n

p
X1
r¼1

~ffhþrðBÞ�k�r�k þ ~ffh�rð1Þ�kþr�k
� ������

����� ¼ oP ð1Þ:
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Finally, we have that

max
1�k�n

ffiffiffi
k

pffiffiffi
n

p jDh;k;3j ¼ oP ð1Þ; ð25Þ

as

max
1�k�n

kffiffiffi
n

p �xx2k �
2 log log nffiffiffi

n
p max

1�k�n

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k log log k

p
Xk
t¼1

xk

�����
�����
2

¼ oP ð1Þ;

which is due to theorem 4.3 of Phillips & Solo (1992, p. 977), so that

max
1�k�n

ffiffiffi
k

pffiffiffi
n

p Dh;k;3

�� �� � max
1�k�n

1ffiffiffi
n

p �xxk
Xk
t¼1

xtþh

�����
�����þ max

1�k�n

1ffiffiffi
n

p
Xk

t¼k�hþ1

ðxt � �xxkÞðxtþh � �xxkÞ
�����

�����
� max

1�k�n

kffiffiffi
n

p �xx2k þ max
1�k�n

1ffiffiffi
n

p �xxk
Xkþh
t¼kþ1

xt

�����
�����þ max

1�k�n

1ffiffiffi
n

p �xxk
Xh
t¼1

xt

�����
�����

þ max
1�k�n

1ffiffiffi
n

p
Xk

t¼k�hþ1

ðxt � �xxkÞðxtþh � �xxkÞ
�����

����� ¼ oP ð1Þ:

Combining (22)–(25), we establish the theorem.

5. Simulation results

In this section, we evaluate the performance of the test statistics Tn and Ln through a simu-

lation study. In particular, Tn and Ln are compared with Nyblom’s (1989) test statistic T
0

n,

which equals L̂L=n2 in Nyblom, and Picard’s (1985, p. 843) test statistic Zn, respectively. For T
0
n,

we employed the MLE for the parameters in the RCA(1) model, which can be found in Quinn

& Nicholls (1981). The empirical sizes and powers are calculated at the nominal level 0.1 in

both cases. In each simulation, 100 initial observations are discarded to remove initialization

effects. First, we deal with Tn in section 3. For the empirical sizes of Tn, sets of 200, 400, 600

and 800 observations are generated from the AR(1) model with / ¼ 0, 0.3 and 0.5, and also

from the RCA(1) model with / ¼ 0, 0.3, where {bt} are normal random variables with mean

zero and x2 ¼ 0.1. In both cases, {�t} is generated from normal random variables with zero

mean and r2 ¼ 1. In order to see the power, we consider the alternatives as follows:

(i) Change from the AR(1) model to the RCA(1) model with x2 ¼ 0.5, and

(ii) Change from the RCA model with x2 ¼ 0.1 to the one with x2 ¼ 0.5.

In each case, we consider two cases: (i) r2 remains equal to 1, and (ii) r2 changes from 1 to 2.

Further, for each simulation we take into consideration the cases where / changes from 0 to 0,

0.3 and 0.5, from 0.3 to 0.3 and 0.5, and from 0.5 to 0.5, respectively. As in Table 3, we use the

symbol a fi b to denote the change from a to b. All these changes are assumed to occur at the

centre of the observations. The critical value at a ¼ 0.1 is 2.576, which is obtained from Table 1.

The figures in Tables 2–6 indicate the proportion of the number of rejections of the null

hypothesis, ‘H0: No changes occur in h ¼ (/, x2, r2)¢’, out of 500 repetitions: the figures

within parentheses are for T
0
n. From Table 2, we can see that neither Tn nor T

0
n produces severe

size distortions. In the meantime, from Tables 3–6, we can see that the powers of Tn and T
0

n are

fairly good in all cases. In particular, there is a tendency for Tn to produce better powers than

T
0

n to some degree. As expected, the powers increase remarkably as more parameters experi-

ence changes. For example, as seen in Tables 4 and 6, the powers are close to 1 when more

than two parameters change.
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All these results indicate that Tn performs adequately for the parameter change test in the

RCA model. In fact, T
0
n also produces reasonably good powers, and neither of the two test

statistics completely outperforms the other. However, one has to recall that Nyblom’s test is

no longer applicable if the underlying distribution is completely unknown. In actual practice,

the most interesting task is to test for a change in x2, especially a change from zero to non-zero

x2, as ignoring random effects can lead to a false conclusion, for instance, in an interval

estimation for the regression parameter.

Table 2. Empirical sizes of Tn and T
0

n at nominal level 0.1 when r2 ¼ 1. The figures for T
0

n are within

parentheses

x2 0 0.1

/ 0.0 0.3 0.5 0.0 0.3

200 0.118 (0.058) 0.160 (0.052) 0.128 (0.052) 0.108 (0.074) 0.150 (0.066)

n 400 0.108 (0.060) 0.140 (0.098) 0.150 (0.080) 0.102 (0.110) 0.106 (0.098)

600 0.122 (0.096) 0.120 (0.088) 0.116 (0.076) 0.064 (0.090) 0.098 (0.102)

800 0.096 (0.082) 0.104 (0.074) 0.124 (0.104) 0.118 (0.096) 0.118 (0.098)

Table 3. Empirical powers of Tn and T
0

n at nominal level 0.1 when x2 changes from 0 to 0.5 and r2 ¼ 1

remains the same. The figures for T
0
n are within parentheses

/ 0 fi 0 0 fi 0.3 0 fi 0.5 0.3 fi 0.3 0.3 fi 0.5 0.5 fi 0.5

200 0.708 (0.364) 0.826 (0.528) 0.958 (0.758) 0.706 (0.392) 0.820 (0.448) 0.772 (0.448)

n 400 0.918 (0.718) 0.982 (0.870) 0.998 (0.942) 0.930 (0.702) 0.964 (0.772) 0.962 (0.778)

600 0.990 (0.874) 1.00 (0.930) 1.00 (0.948) 0.984 (0.848) 0.990 (0.876) 0.988 (0.800)

800 0.998 (0.902) 1.00 (0.922) 1.00 (0.936) 1.00 (0.868) 0.996 (0.872) 0.994 (0.834)

Table 4. Empirical powers of Tn and T
0

n at nominal level 0.1 when x2 changes from 0 to 0.5 and r2 changes

from 1 to 2. The figures for T
0
n are within parentheses

/ 0 fi 0 0 fi 0.3 0 fi 0.5 0.3 fi 0.3 0.3 fi 0.5 0.5 fi 0.5

200 0.994 (0.892) 0.996 (0.940) 1.00 (0.952) 0.994 (0.898) 0.998 (0.928) 0.994 (0.868)

n 400 1.00 (0.968) 1.00 (0.960) 1.00 (0.956) 1.00 (0.940) 0.998 (0.922) 0.996 (0.888)

600 1.00 (0.976) 1.00 (0.958) 1.00 (0.960) 1.00 (0.934) 1.00 (0.914) 0.998 (0.876)

800 1.00 (0.968) 1.00 (0.956) 1.00 (0.928) 1.00 (0.952) 0.998 (0.912) 1.00 (0.890)

Table 5. Empirical powers of Tn and T
0

n at nominal level 0.1 when x2 changes from 0.1 to 0.5 and r2 ¼ 1

remains the same. The figures for T
0
n are within parentheses

/ 0 fi 0 0 fi 0.3 0 fi 0.5 0.3 fi 0.3 0.3 fi 0.5

200 0.544 (0.254) 0.676 (0.406) 0.878 (0.710) 0.564 (0.270) 0.688 (0.344)

n 400 0.770 (0.550) 0.926 (0.824) 0.992 (0.928) 0.746 (0.516) 0.870 (0.686)

600 0.856 (0.712) 0.962 (0.890) 1.00 (0.956) 0.888 (0.750) 0.950 (0.824)

800 0.914 (0.838) 0.994 (0.932) 1.00 (0.952) 0.960 (0.840) 0.980 (0.878)

Table 6. Empirical powers of Tn and T
0

n at nominal level 0.1 when x2 changes from 0.1 to 0.5 and r2 changes

from 1 to 2. The figures for T
0
n are within parentheses

/ 0 fi 0 0 fi 0.3 0 fi 0.5 0.3 fi 0.3 0.3 fi 0.5

200 0.978 (0.860) 0.990 (0.908) 0.998 (0.948) 0.978 (0.842) 0.972 (0.848)

n 400 0.998 (0.970) 0.996 (0.974) 0.998 (0.960) 1.00 (0.952) 0.998 (0.950)

600 1.00 (0.972) 1.00 (0.966) 0.998 (0.960) 1.00 (0.942) 0.994 (0.920)

800 1.00 (0.984) 1.00 (0.962) 0.998 (0.954) 1.00 (0.926) 0.998 (0.936)
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Now we deal with the test Ln in section 4. The Ln is compared with Picard’s test

statistic Zn. For empirical sizes, sets of 200, 400, and 600 observations are generated from

the AR(1) model with / ¼ 0.1, 0.3, 0.5, and 0.7 with {�t} � N(0, 1). Here, we test for a

change of c(0) and c(1), viz., m ¼ 1. In order to see the power, we consider the alter-

natives under which the first half of the observations are from the AR(1) model described

above, and the other half are from i.i.d N(0, 1/(1 ) /2)) random variables. Here, we keep

c(0) constant under both the null and the alternative hypotheses in order to concentrate

on c(1). Note that under the null hypothesis, c(1) is //(1 ) /2) for the whole set of

observations, and under the alternative, c(1) changes from this value to zero. In this

simulation, we utilize hn ¼ n0.4 for calculating ĈCij and ĵj4 ¼ n�1
Pn

t¼1 �̂�
4
t =ðn�1

Pn
t¼1 �̂�

2
t Þ

2 � 3,

where �̂�t ¼ xt � /̂/xt�1 and /̂/ is the least-squares estimator. The critical value for Ln

at a ¼ 0.1 is 2.054 (see Table 1). All the figures in Table 7 are obtained from 500

repetitions.

Table 7 shows the empirical sizes and powers of Ln and Zn (the figures within parentheses

are for Zn). From Table 7, we can see that the sizes of Ln are less than 0.1 in most cases, which

ensures no severe size distortions. On the other hand, Table 7 shows that Zn has severe size

distortions at / ¼ 0.7. The power in both cases increases to 1 as either / or n increases. It

appears that Ln tends to produce much better powers than Zn. Overall, the result indicates that

our cusum test works more appropriately.

6. Concluding remarks

In this paper, we proposed a cusum test for parameter change in time series models, and

provided a sufficient condition under which the test statistic converges in distribution to the

sup of the sum of independent standard Brownian bridges. In section 5, we have seen

the simulation results on the cusum test for the models that we discussed in sections 3 and 4.

The RCA model and the infinite order moving average model are important models in time

series analysis, and the change point test for the regression parameter and autocovariance

functions are of much interest to practitioners. As a matter of fact, this paper has been

motivated by the fact that the cusum test has not been established in general situations.

Although we do not pursue it here, the application of our method is not only restricted to the

models which we discussed in our paper, but covers a broad class of statistical models. For

instance, one may perform a test for other time series models such as threshold models and

ARCH models, or perform a robust test by employing robust estimators if one has concerns

about outliers in the data. In this paper, we did not discuss all these cases. However,

we believe that our test provides a functional tool to test for a change under a variety of

circumstances.

Table 7. Empirical sizes and powers of Ln and Zn at nominal level 0.1. The figures for Zn are within

parentheses

Size Power

/ 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7

200 0.062 0.066 0.084 0.136 0.076 0.386 0.886 0.998

(0.066) (0.096) (0.144) (0.156) (0.066) (0.158) (0.326) (0.604)

n 400 0.084 0.070 0.060 0.128 0.136 0.728 1.00 1.00

(0.078) (0.106) (0.152) (0.196) (0.098) (0.258) (0.622) (0.938)

600 0.084 0.084 0.072 0.126 0.208 0.904 1.00 1.00

(0.104) (0.122) (0.124) (0.222) (0.120) (0.360) (0.836) (0.996)
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